Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Proc Natl Acad Sci U S A ; 120(22): e2221887120, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2325449

ABSTRACT

Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection-for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we reanalyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same dataset reported shorter mean observed incubation period (3.2 d vs. 4.4 d) and serial interval (3.5 d vs. 4.1 d) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8 to 4.5 d) for both variants but a shorter mean generation interval for the Omicron variant (3.0 d; 95% CI: 2.7 to 3.2 d) than for the Delta variant (3.8 d; 95% CI: 3.7 to 4.0 d). The differences in estimated generation intervals may be driven by the "network effect"-higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Netherlands/epidemiology
2.
Wellcome Open Res ; 5: 78, 2020.
Article in English | MEDLINE | ID: covidwho-2297273

ABSTRACT

We estimate the number of COVID-19 cases from newly reported deaths in a population without previous reports. Our results suggest that by the time a single death occurs, hundreds to thousands of cases are likely to be present in that population. This suggests containment via contact tracing will be challenging at this point, and other response strategies should be considered. Our approach is implemented in a publicly available, user-friendly, online tool.

3.
Elife ; 122023 04 21.
Article in English | MEDLINE | ID: covidwho-2303644

ABSTRACT

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. Funding: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).


Subject(s)
COVID-19 , Communicable Diseases , Epidemics , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Forecasting , Models, Statistical , Retrospective Studies
4.
PLOS global public health ; 2(9), 2022.
Article in English | EuropePMC | ID: covidwho-2260594

ABSTRACT

Governments around the world have implemented non-pharmaceutical interventions to limit the transmission of COVID-19. Here we assess if increasing NPI stringency was associated with a reduction in COVID-19 cases in Ghana. While lockdowns and physical distancing have proven effective for reducing COVID-19 transmission, there is still limited understanding of how NPI measures are reflected in indicators of human mobility. Further, there is a lack of understanding about how findings from high-income settings correspond to low and middle-income contexts. In this study, we assess the relationship between indicators of human mobility, NPIs, and estimates of Rt, a real-time measure of the intensity of COVID-19 transmission. We construct a multilevel generalised linear mixed model, combining local disease surveillance data from subnational districts of Ghana with the timing of NPIs and indicators of human mobility from Google and Vodafone Ghana. We observe a relationship between reductions in human mobility and decreases in Rt during the early stages of the COVID-19 epidemic in Ghana. We find that the strength of this relationship varies through time, decreasing after the most stringent period of interventions in the early epidemic. Our findings demonstrate how the association of NPI and mobility indicators with COVID-19 transmission may vary through time. Further, we demonstrate the utility of combining local disease surveillance data with large scale human mobility data to augment existing surveillance capacity to monitor the impact of NPI policies.

5.
Stat Methods Med Res ; 31(9): 1675-1685, 2022 09.
Article in English | MEDLINE | ID: covidwho-2236610

ABSTRACT

Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text]. The magnitude of [Formula: see text] indicates by how much transmission needs to be reduced to control the epidemic. Using [Formula: see text] in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of [Formula: see text] but many, and the precise definition of [Formula: see text] affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined [Formula: see text], there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate [Formula: see text] vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when [Formula: see text] is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of [Formula: see text], and the data and methods used to estimate it, can make [Formula: see text] a more useful metric for future management of the epidemic.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , Forecasting , Humans , Pandemics/prevention & control , Reproduction
6.
Sci Total Environ ; : 158636, 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2233857

ABSTRACT

BACKGROUND AND AIM: The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission.

7.
Lancet Reg Health Am ; 5: None, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2233186

ABSTRACT

BACKGROUND: Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and 557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic, but are often challenging due to different population sizes and structures. METHODS: We describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age standardised and used to estimate the effective reproduction number (Rt ). We show how such platforms can perform real-time regression analyses to identify factors associated with the rate of initial spread and early reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of COVID-19 incidence. FINDINGS: After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, the epidemic spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11·1 days [95% CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial epidemic intensity (mean Rt ) were largely driven by geographic location and the date of local onset. INTERPRETATION: This study demonstrates that platforms that monitor, standardise and analyse the epidemiological data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt responses to the current and future pandemics. FUNDING: This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0).

8.
Elife ; 92020 08 13.
Article in English | MEDLINE | ID: covidwho-2155738

ABSTRACT

As of 1 May 2020, there had been 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. The epidemic had been in decline since mid-March, with 308 cases confirmed nationally since 14 April. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis - for now. Analysing factors that contribute to individual country experiences of COVID-19, such as the intensity and timing of public health interventions, will assist in the next stage of response planning globally. We describe how the epidemic and public health response unfolded in Australia up to 13 April. We estimate that the effective reproduction number was likely below one in each Australian state since mid-March and forecast that clinical demand would remain below capacity thresholds over the forecast period (from mid-to-late April).


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Australia/epidemiology , COVID-19 , Child , Child, Preschool , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/statistics & numerical data , Coronavirus Infections/prevention & control , Female , Forecasting , Geography, Medical , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Health , Quarantine , SARS-CoV-2 , Travel , Young Adult
9.
PLoS Comput Biol ; 18(9): e1010405, 2022 09.
Article in English | MEDLINE | ID: covidwho-2162508

ABSTRACT

Forecasts based on epidemiological modelling have played an important role in shaping public policy throughout the COVID-19 pandemic. This modelling combines knowledge about infectious disease dynamics with the subjective opinion of the researcher who develops and refines the model and often also adjusts model outputs. Developing a forecast model is difficult, resource- and time-consuming. It is therefore worth asking what modelling is able to add beyond the subjective opinion of the researcher alone. To investigate this, we analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We compared crowd forecasts elicited from researchers and volunteers, against a) forecasts from two semi-mechanistic models based on common epidemiological assumptions and b) the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts, despite being overconfident, to outperform all other methods across all forecast horizons when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks ahead: 0.89). Forecasts based on computational models performed comparably better when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and human judgement can complement each other in important ways.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Forecasting , Humans , Pandemics , Poland/epidemiology
11.
Commun Med (Lond) ; 2(1): 136, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2096834

ABSTRACT

BACKGROUND: During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. METHODS: We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study. RESULTS: We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict. CONCLUSIONS: Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.


We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future.

13.
BMC Public Health ; 22(1): 716, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1785149

ABSTRACT

BACKGROUND: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need ("pillar 1") before expanding to community-wide symptomatics ("pillar 2"). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. METHODS: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January 2020-30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA. RESULTS: A model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. CONCLUSIONS: Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Cost of Illness , Humans , Information Storage and Retrieval , SARS-CoV-2
14.
Elife ; 112022 02 09.
Article in English | MEDLINE | ID: covidwho-1742929

ABSTRACT

The distribution of the generation time (the interval between individuals becoming infected and transmitting the virus) characterises changes in the transmission risk during SARS-CoV-2 infections. Inferring the generation time distribution is essential to plan and assess public health measures. We previously developed a mechanistic approach for estimating the generation time, which provided an improved fit to data from the early months of the COVID-19 pandemic (December 2019-March 2020) compared to existing models (Hart et al., 2021). However, few estimates of the generation time exist based on data from later in the pandemic. Here, using data from a household study conducted from March to November 2020 in the UK, we provide updated estimates of the generation time. We considered both a commonly used approach in which the transmission risk is assumed to be independent of when symptoms develop, and our mechanistic model in which transmission and symptoms are linked explicitly. Assuming independent transmission and symptoms, we estimated a mean generation time (4.2 days, 95% credible interval 3.3-5.3 days) similar to previous estimates from other countries, but with a higher standard deviation (4.9 days, 3.0-8.3 days). Using our mechanistic approach, we estimated a longer mean generation time (5.9 days, 5.2-7.0 days) and a similar standard deviation (4.8 days, 4.0-6.3 days). As well as estimating the generation time using data from the entire study period, we also considered whether the generation time varied temporally. Both models suggest a shorter mean generation time in September-November 2020 compared to earlier months. Since the SARS-CoV-2 generation time appears to be changing, further data collection and analysis is necessary to continue to monitor ongoing transmission and inform future public health policy decisions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Public Health , United Kingdom/epidemiology
15.
Lancet ; 399(10332): 1303-1312, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1740323

ABSTRACT

BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
16.
Lancet Infect Dis ; 22(5): 657-667, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713042

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in unprecedented disruption to society, which indirectly affects infectious disease dynamics. We aimed to assess the effects of COVID-19-related disruption on dengue, a major expanding acute public health threat, in southeast Asia and Latin America. METHODS: We assembled data on monthly dengue incidence from WHO weekly reports, climatic data from ERA5, and population variables from WorldPop for 23 countries between January, 2014 and December, 2019 and fit a Bayesian regression model to explain and predict seasonal and multi-year dengue cycles. We compared model predictions with reported dengue data January to December, 2020, and assessed if deviations from projected incidence since March, 2020 are associated with specific public health and social measures (from the Oxford Coronavirus Government Response Tracer database) or human movement behaviours (as measured by Google mobility reports). FINDINGS: We found a consistent, prolonged decline in dengue incidence across many dengue-endemic regions that began in March, 2020 (2·28 million cases in 2020 vs 4·08 million cases in 2019; a 44·1% decrease). We found a strong association between COVID-19-related disruption (as measured independently by public health and social measures and human movement behaviours) and reduced dengue risk, even after taking into account other drivers of dengue cycles including climatic and host immunity (relative risk 0·01-0·17, p<0·01). Measures related to the closure of schools and reduced time spent in non-residential areas had the strongest evidence of association with reduced dengue risk, but high collinearity between covariates made specific attribution challenging. Overall, we estimate that 0·72 million (95% CI 0·12-1·47) fewer dengue cases occurred in 2020 potentially attributable to COVID-19-related disruption. INTERPRETATION: In most countries, COVID-19-related disruption led to historically low dengue incidence in 2020. Continuous monitoring of dengue incidence as COVID-19-related restrictions are relaxed will be important and could give new insights into transmission processes and intervention options. FUNDING: National Key Research and Development Program of China and the Medical Research Council.


Subject(s)
COVID-19 , Dengue , Bayes Theorem , COVID-19/epidemiology , Dengue/epidemiology , Humans , Latin America/epidemiology , Pandemics , SARS-CoV-2
17.
BMC Med ; 20(1): 86, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1703629

ABSTRACT

BACKGROUND: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. METHODS: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. RESULTS: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. CONCLUSIONS: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings.


Subject(s)
COVID-19 , Forecasting , Hospitals , Humans , Pandemics , SARS-CoV-2 , State Medicine
18.
Lancet Regional Health. Americas ; 5:100119-100119, 2021.
Article in English | EuropePMC | ID: covidwho-1652110

ABSTRACT

Background Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and 557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic, but are often challenging due to different population sizes and structures. Methods We describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age standardised and used to estimate the effective reproduction number (Rt). We show how such platforms can perform real-time regression analyses to identify factors associated with the rate of initial spread and early reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of COVID-19 incidence. Findings After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, the epidemic spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11·1 days [95% CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial epidemic intensity (mean Rt) were largely driven by geographic location and the date of local onset. Interpretation This study demonstrates that platforms that monitor, standardise and analyse the epidemiological data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt responses to the current and future pandemics. Funding This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0)

19.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613510

ABSTRACT

We estimate the potential remaining COVID-19 hospitalisation and death burdens in 19 European countries by estimating the proportion of each country's population that has acquired immunity to severe disease through infection or vaccination. Our results suggest many European countries could still face high burdens of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.


Subject(s)
COVID-19 , Europe/epidemiology , Hospitalization , Humans , SARS-CoV-2 , Vaccination
20.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: covidwho-1476375

ABSTRACT

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Vaccines , Child , Child, Preschool , Communicable Disease Control , England/epidemiology , Europe/epidemiology , Female , Humans , Infant , Male , Middle Aged , Models, Theoretical , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Severity of Illness Index , Socioeconomic Factors , United States/epidemiology , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL